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Abstract. Analytical solutions for the electric potential in different mixed-boundary-value problems are found by
use of the Wiener-Hopf method. The problem arises in the investigation of the influence of a non-uniform electric
field on an electrorheological fluid flowing through a plane channel. The solution is given in terms of infinite series
involving Gamma functions. The electric field in the vicinity of the electrode edges is evaluated asymptotically.
Some parametric studies are made with respect to the ratio between the permittivity of the electrorheological fluid
and the permittivity of the isolating material outside the channel. Numerical solutions are also given.
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1. Introduction

We determine here the distribution of the electric potential around two long electrodes charged
with different potentials in a symmetric, an anti-symmetric and a non-symmetric way. The
term "long electrode" denotes here either a semi-infinite electrode or a finite electrode of a
certain length chosen so that the two far edges of the electrode do not interact. The final goal
is to use these solutions in further studies concerning the channel flow of electrorheological
fluids (ERF). These are fluids that change their material properties (especially the viscosity)
if they are exposed to an electric field (see [1]). In modeling the ERF it is assumed, in a
first approximation, that the flow does not affect the electric field. Consequently, the electric
problem can be decoupled from the mechanical equations and the study of the solution for the
electric field can be carried out independently and then used in a second step in the mechanical
problem. In this paper we study the electrical problem as a preparation to the flow problem
determined in a second step.

So far, in many works concerning channel flows of electrorheological fluids (see [2] and
[3]), the assumption of a homogeneous electric field has been used in order to calculate
analytic solutions for the velocity field, by considering that the electrodes are infinite. In
reality, important inhomogeneity effects appear in the vicinity of the electrode edges which
have not yet been modeled. In addition, experimental investigations (see [4] and [5]) demon-
strated that inhomogeneities in the electric field have a greater effect on the flow than an-
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Figure 1. Configuration of the electrodes with non-symmetric boundary conditions.

ticipated. This led to the idea that more-efficient effects for applications could be obtained
under strongly space-dependent electric fields. Here we present (semi)-analytical solutions by
using the Wiener-Hopf technique. The reason for doing this is two-fold: on the one hand, the
method of construction allows us to find an entire class of solutions for technically interesting
configurations, and, on the other hand, evaluation of the electric and velocity fields for these
solutions via the WH-technique, is computationally far more economical (the CPU-times of
the latter are a factor of 50–100 larger than for the former) than using the available numerical
integrators for elliptic equations for the same configurations. Furthermore, the WH-technique
features the singularities at the tips of the electrodes explicitly, which in a numerical solution
must be approximately accounted for by rather costly mesh refinements.

In Section 2, the general problem for the electric potential is formulated as a mixed-
boundary-value problem. Continuity conditions in the tangential derivative and jump con-
ditions in the normal derivative are taken into account across the channel walls. Owing to
the linearity of the problem, the solution is constructed as a sum of two solutions for two
particular problems: with symmetric and anti-symmetric boundary conditions. The Wiener-
Hopf procedure is successfully applied to solve these problems in Sections 3 and 4. First we
deduce the Wiener-Hopf equations and then the factorizations are accomplished. The singular
behaviour of the electric field near the ends of the electrodes is determined in Section 5. In
Section 6 the results are plotted and some remarks are presented. The final section is devoted
to summarizing the results.

2. Formulation of the problem

Let Oxy be a Cartesian coordinate system. We consider an infinitely long channel of height
2h consisting of two infinite parallel planes of zero thickness (see Figure 1). These planes are
situated at y = −h and y = h, respectively. Along the channel walls, two electrodes charged
with different potentials are placed (at the upper electrode a constant potential 2V is applied
and the lower electrode is grounded). The electrodes are insulated outside the channel by a
dielectric material having electric permittivity ε1. The medium inside the channel has electric
permittivity ε2. We solve the problem in a bounded domain in the y-direction, where the
upper and lower boundaries consist of two infinite grounded electrodes situated at a distance
L > h from the x-axis. If L is sufficiently large, this is equivalent with the usual conditions at
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infinity requiring the potential to vanish at y = ±∞. For smaller L, this configuration can still
be easily realized in practice. We mention that the two grounding electrodes at y = ±L are
needed for technical reasons when solving the WH-problem, for otherwise no solution could
be found, i.e., when no grounding electrodes are present. Physically, this is no restriction
because the channel will always be earthed and the system can always be considered for
large L.

First, we will formulate and solve the problem in the case of semi-infinite electrodes. The
origin of the coordinate system is shifted to the left by an amount x = a and the electrodes
are prolonged to infinity on the right side. The solution can be used directly to describe the
corresponding case with finite electrodes provided that their length allows non-coupling of the
left and right electrode ends. From parametric studies we can determine such length values in
relation with L, h and c = ε1/ε2 (see Section 6). In summary our problem reads

∇2ϕ = 0 in − ∞ < x < ∞, −L ≤ y ≤ L , (2.1)

with the boundary conditions

ϕ (x, h) = 2V, x ≥ 0 , (2.2)

ϕ (x,−h) = 0, x ≥ 0 , (2.3)

ϕ,1 (x, h+) = ϕ,1 (x, h−), x ≤ 0 , (2.4)

ϕ,1 (x, −h+) = ϕ,1 (x, −h−), x ≤ 0 , (2.5)

ϕ,2 (x, h−) = c ϕ,2 (x, h+), x ≤ 0 , (2.6)

ϕ,2 (x, −h+) = c ϕ,2 (x, −h−), x ≤ 0 , (2.7)

ϕ(x,±L) = 0, −∞ < x < ∞ . (2.8)

Here the quantity ϕ denotes the electric potential. The electric field is then given by E =
−grad ϕ. The notations ϕ,1, ϕ,2 are used to denote the partial derivatives of the function ϕ

with respect to x and y respectively. To specify the jump of the components of the electric
field across y = ±h for x ≤ 0, we use the upper index “+” to indicate the limit as y tends to
±h from positive values of (y ∓ h) and the upper index “−” to indicate the limit as y tends
to ±h from negative values of (y ∓ h). Since the domain is symmetric with respect to the x-
axis, it is more convenient to split the problem, by applying the principle of superposition, in
two easier problems corresponding to the symmetric and anti-symmetric parts of the unknown
function ϕ with respect to y (see Figure 2):

ϕs(x, y) = ϕ(x, y) + ϕ(x,−y)

2
, (2.9)

ϕa(x, y) = ϕ(x, y) − ϕ(x,−y)

2
. (2.10)

Again, from symmetry considerations, it is sufficient to solve these two problems for y ≥ 0.
It is easy to prove that the boundary-value problem (BVP) for the symmetric part reads

∇2ϕs = 0 in − ∞ < x < ∞, 0 ≤ y ≤ L , (2.11)
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Figure 2. Schematic diagram of the electrodes configuration for the particular problems.

where ϕs satisfies the boundary conditions

ϕs (x, h) = V, x ≥ 0 , (2.12)

ϕs
,2 (x, 0) = 0, −∞ < x < ∞ , (2.13)

ϕs
,1 (x, h+) = ϕs

,1 (x, h−), x ≤ 0 , (2.14)

ϕs
,2 (x, h−) = c ϕs

,2 (x, h+), x ≤ 0 , (2.15)

ϕs(x, L) = 0, −∞ < x < ∞ , (2.16)

while the BVP for the anti-symmetric part is

∇2ϕa = 0 in − ∞ < x < ∞, 0 ≤ y ≤ L , (2.17)

with the boundary conditions

ϕa (x, h) = V, x ≥ 0 , (2.18)

ϕa (x, 0) = 0, −∞ < x < ∞ , (2.19)

ϕa
,1 (x, h+) = ϕa

,1 (x, h−), x ≤ 0 , (2.20)

ϕa
,2 (x, h−) = c ϕa

,2 (x, h+), x ≤ 0 , (2.21)

ϕa(x, L) = 0, −∞ < x < ∞ . (2.22)

We simply remark that, so far, the two problems differ only through the conditions (2.13) and
(2.19) required by symmetry and anti-symmetry, respectively. We continue by solving them
in parallel and writing the common relations only once (with double superscript).

3. Method of solution

We will solve the afore-mentioned problem by following the method given by Noble [6].
To avoid the difficulties that appear when Fourier transforming a constant function, we will
replace ϕs/a(x, h) = V by

ϕs/a(x, h) = V e−εx =: ϕ0(x) , 0 ≤ x < ∞ (ε > 0). (3.1)

We shall ultimately let ε → 0.1 Multiplying the Laplace equation by eiαx , with α being the
Fourier transform variable, and integrating the resulting equation with respect to x from −∞
1The idea of 3.1 has been adopted from [6, pp. 135].
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to ∞, we obtain

d2�s/a(α, y)/dy2 − α2�s/a(α, y) = 0 , 0 ≤ y ≤ L , (3.2)

where

�s/a(α, y) = 1

(2π)1/2

∞∫
−∞

ϕs/a eiαx dx . (3.3)

The solution of (3.2) is

�s/a(α, y) =
{

A
s/a

1 (α) e−αy + B
s/a

1 (α) eαy , 0 ≤ y ≤ h ,

A
s/a

2 (α) e−αy + B
s/a

2 (α) eαy , h ≤ y ≤ L .
(3.4)

The Fourier-transformed common boundary conditions are

�
s/a
+ (α, h+) = �

s/a
+ (α, h−) = �0, �

s/a
− (α, h+) = �

s/a
− (α, h−), (3.5, 6)

(�
s/a
− )′(α, h−) = c (�

s/a
− )′(α, h+) �

s/a
− (α, L) = �

s/a
+ (α, L) = 0, (3.7, 8)

where

�
s/a
+ (α, y) = 1

(2π)1/2

∞∫
0

ϕs/a eiαx dx , (3.9)

�
s/a
− (α, y) = 1

(2π)1/2

0∫
−∞

ϕs/a eiαx dx , (3.10)

�0(α) = k/(ε − iα) , k = V/
√

2π , (3.11)

and where the dash is used to denote differentiation with respect to y. In addition, (2.13) and
(2.19) yield

(�s+)′(α, 0) = (�s−)′(α, 0) = 0, �a+(α, 0) = �a−(α, 0) = 0. (3.12, 13)

From now on, the α-argument of the functions will be dropped. Using (3.4), (3.12), (3.8) and
�s(α, h+) = �s(α, h−) by (3.5) and (3.6), we deduce

�s(α, y) =




+2As
1 cosh (αy) , 0 ≤ y ≤ h ,

+2As
1

cosh (αh) sinh (αL − αy)

sinh (αL − αh)
, h ≤ y ≤ L .

(3.14)

After straightforward calculations we obtain from (3.14), on using (3.5–3.12), the relations

�0 + �s−(h) = 2As
1 cosh (αh), (3.15)

(�s+)′(h+) + (�s−)′(h+) = −2α As
1 cosh (αh) coth (α(L − h)), (3.16)
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(�s+)′(h−) + c(�s−)′(h+) = 2α As
1 sinh (αh). (3.17)

Analogously, (3.4), (3.13), (3.8) and �a(α, h+) = �a(α, h−), by (3.5) and (3.6), yield

�a(α, y) =




−2Aa
1 sinh (αy) , 0 ≤ y ≤ h ,

−2Aa
1

sinh (αh) sinh (αL − αy)

sinh (αL − αh)
, h ≤ y ≤ L .

(3.18)

Then from (3.18) and (3.5–3.13) we have

Phi0 + �a−(h) = −2Aa
1 sinh (αh), (3.19)

(�a+)′(h+) + (�a−)′(h+) = 2α Aa
1 sinh (αh) coth (α(L − h)), (3.20)

(�a+)′(h−) + c(�a−)′(h+) = −2α Aa
1 cosh (αh). (3.21)

This puts us now in the position to formulate the Wiener-Hopf equation. To this end, multiply
(3.16) and (3.20) by c and subtract the resulting equations from (3.17) and (3.21), respectively.
If we introduce F

s/a
+ = c (�

s/a
+ )′(h+) − (�

s/a
+ )′(h−) and F

s/a
− = �

s/a
− (h), we obtain, by elim-

inating the unknown coefficient A
s/a

1 , the Wiener-Hopf equations for the unknown functions
F

s/a
+ and F

s/a
− corresponding to each problem, namely

Ks/aF
s/a
+ + F

s/a
− = −�0 , (3.22)

where

Ks(α) = 1

α [ c coth (αL − αh) + tanh (α h) ] , (3.23)

Ka(α) = 1

α [ c coth (αL − αh) + coth (α h) ] . (3.24)

If Equation (3.22) is solved, the coefficients A
s/a

1 are found by inserting the functions F
s/a
− in

(3.15) and in (3.19), respectively. We can obtain the Fourier transforms of the solutions from
(3.14) and (3.18) and then, by inverting them, we obtain the final solutions.

4. Application of the Wiener-Hopf technique

In addition to the boundary conditions from Section 2, some regularity assumptions concern-
ing the potential function are needed in order to ensure the applicability of the Wiener-Hopf
technique. Assuming that ϕ(x, h) is a bounded function of x for x ≤ 0, we have that the
function F

s/a
− will be analytic in the half-plane τ < 0, −∞ < σ < ∞, where α = σ + iτ .

It is also reasonable, because of (3.1), to expect that ϕ(x, y) decays exponentially to zero as
x → ∞, i.e., there exists a b > 0 such that ϕ(x, y)e−bx is absolutely integrable over the
positive x-axis for all y. This yields that (�

s/a
+ )′(h+) and (�

s/a
+ )′(h−) are analytic for τ > −b.

We may take b = ε, where ε is the small parameter introduced in (3.1). Now, the functions
F

s/a
− and F

s/a
+ are both analytic in the strip −ε < τ < 0. If a decomposition of the kernel

Ks/a can be accomplished in the form Ks/a(α) = K
s/a
− (α)K

s/a
+ (α) where K

s/a
+ is analytic and
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non-zero for τ > −ε, and K
s/a
− is analytic and non-zero for τ < 0, one may rearrange (3.22)

as

K
s/a
+ F

s/a
+ + F

s/a
− /K

s/a
− = −�0/K

s/a
− . (4.1)

Writing

−�0/K
s/a
− = H

s/a
+ + H

s/a
− , (4.2)

where H
s/a
− (α) and H

s/a
+ (α) are analytic in τ < 0 and τ > −ε, respectively, we may define a

new function,

J s/a(α) : = K
s/a
+ (α)F

s/a
+ (α) − H

s/a
+ (α) = −F

s/a
− (α)/K

s/a
− (α) + H

s/a
− (α) , (4.3)

in −ε < τ < 0. Because of the properties of the second and third parts of this equation, by
analytic continuation, J (α) can be defined over the whole α-plane as an entire function. Using
the order properties of the functions K

s/a
+ F

s/a
+ − H

s/a
+ and −F

s/a
− /K

s/a
− + H

s/a
− for large

values of α , one can determine the form of J s/a(α) with the help of the Liouville theorem
and then find F

s/a
− (α).

The most important step in the solution consists in decomposing the Wiener-Hopf kernel
Ks/a(α). This can be accomplished by inspection when infinite-product representations of the
numerator and denominator are known. We shall derive these representations as follows: first
an appropriate form of Ks/a is needed,

Ks(α) = [2 sinh (αL − αh) cosh (αh)]/α
[ (c + 1) cosh (αL) + (c − 1) cosh (αL − 2αh) ] , (4.4)

Ka(α) = [2 sinh (αL − αh) sinh (αh)]/α2

[ (c + 1) sinh (αL) + (1 − c) sinh (αL − 2αh) ]/α . (4.5)

Now, we can decompose the numerator and the denominator of Ks/a, using the infinite-
product theorem applied for an even function (see [6, pp. 15 and pp. 40]). To do this, the zeros
of the functions should be determined. The numerator vanishes for α = ±iκn and α = ±iλn

in the symmetric case, and for α = ±iµn and α = ±iκn in the anti-symmetric case, where
κn = nπ/(L − h), λn = (n − 1/2)π/h and µn = nπ/h, (n = 1, 2, 3, ...). It is easy to prove
that the zeros of the denominator are purely imaginary in both cases [7]. Consequently, the
zeros α = iτ can be found by solving the real equations (with τ as unknown)

cos (τL) = c1 cos (τ (L − 2h)) , sin (τL) = −c1 sin (τ (L − 2h)) , (4.6, 7)

where c1 = (1 − c)/(1 + c), |c1| < 1. There are two special cases when the roots of (4.6) and
(4.7) are explicitly known: when L = 2h and when ε1 = ε2 that means c = 1 and c1 = 0.
Except for these particular situations, Equations (4.6) and (4.7) cannot be solved analytically
and, consequently, their zeros must be found numerically. Now, let us study the periodicity of
the solutions. Suppose that L > 2h and that L/(L − 2h) is a rational number written as

L/(L − 2h) = p/q , (4.8)

where p, q are positive integers that are mutually prime, with p > q. Then it follows that the
complete solutions of (4.6) and (4.7) are τ = ±δnl = ±(δl + 2pπ(n − 1)/L) and τ = 0, τ =
±γnl = ±(γl + 2pπ(n − 1)/L), respectively, l = 1, 2, ... 2p, n = 1, 2, 3..., where δl and
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γl are the solutions of these equations only in the interval (0, 2πp/L], ordered increasingly
[7]. So, the zeros of the denominators are α = ±i δnl in the symmetric case and α = ±i γnl in
the anti-symmetric one. We note that δl is located between (l − 1)π/L and lπ/L, while γl is
located between (2l − 1)π/2L and (2l + 1)π/2L and γ2p = 2πp/L. Moreover, if δl and γl

are solutions of (4.6) and (4.7), respectively, in the interval (0, 2πp/L] then 2πp/L − δl and
2πp/L − γl are also solutions of (4.6) and (4.7), respectively. δl and γl will be numerically
determined with good precision using the MATHEMATICA software [8].

We mention that the choice of L and h (4.8) is not restrictive for the concrete model but
very advantageous since it reduces the computation only to the interval (0, 2πp/L]. Moreover,
(4.8) provides us with the approximate locations of the zeros and this is helpful in evaluating
the asymptotic behaviour of the split functions of Ks(α) and Ka(α). Applying the infinite
product theorem, we finally arrive at the representations

Ks(α) =
2(L − h)

∞∏
n=1

{[
1 +

(
α
λn

)2
] [

1 +
(

α
κn

)2
]}

2c
∞∏

n=1

{
2p∏
l=1

[
1 +

(
α
δnl

)2
]} , (4.9)

Ka(α) =
2h(L − h)

∞∏
n=1

{[
1 +

(
α
µn

)2
] [

1 +
(

α
κn

)2
]}

[ 2L − 2h(1 − c) ]
∞∏

n=1

{
2p∏
l=1

[
1 +

(
α
γnl

)2
]} . (4.10)

The last two formulas can also be applied to the particular cases c = 1 and L = 2h. However,
in these cases p will not be determined from (4.8); in fact, it can be proved that p can be
assigned any positive integer value larger than 1 and so we will take p = 2 if c = 1 or
L = 2h.

We can now write

Ks/a(α) = K
s/a
+ (α)K

s/a
− (α) , (4.11)

where

Ks
±(α) = cs

2 e±χs (α)

∞∏
n=1

{(
1 ∓ iα

λn

)
e±iα/λn

(
1 ∓ iα

κn

)
e±iα/κn

}
∞∏

n=1

{
2p∏
l=1

(
1 ∓ iα

δnl

)
e±iα/

2pπn
L

} , (4.12)

Ka
±(α) = ca

2 e±χa(α)

∞∏
n=1

{(
1 ∓ iα

µn

)
e±iα/µn

(
1 ∓ iα

κn

)
e±iα/κn

}
∞∏

n=1

{
2p∏
l=1

(
1 ∓ iα

γnl

)
e±iα/

2pπn
L

} , (4.13)

with

cs
2 =

√
L − h

c
, ca

2 =
√

h(L − h)

L − h(1 − c)
. (4.14)
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The functions χs/a(α) are arbitrary and have to be chosen to ensure that K
s/a
+ and K

s/a
− have

simple asymptotic behaviour as |α| → ∞ in the appropriate half-planes. To remove the infin-
ite products it is convenient to express the functions K

s/a
+ and K

s/a
− in terms of 
-functions by

use of the well-known formula (see [6, pp. 41])
∞∏

n=1

(1 + α

an + b
)e−α/(an) = e−Cα/a
(

b

a
+ 1)/
(

α

a
+ b

a
+ 1) , (4.15)

where C = 0·5772. . . is the Euler constant. This leads to the representations

Ks
±(α) = cs

2

cs
5




(
1

2

)
2p∏
l=1




[
∓ iαL

2pπ
+ δlL

2pπ

]
exp[±χs(α) ± iαh

2 log 2
π

]




[
1 ∓ i

α(L − h)

π

]



(
1

2
∓ i

αh

π

) , (4.16)

Ka
±(α) = ca

2

ca
5

2p∏
l=1




[
∓ iαL

2pπ
+ γlL

2pπ

]
exp[±χa(α)]




[
1 ∓ i

α(L − h)

π

]



(
1 ∓ i

αh

π

) , (4.17)

where cs
5 =

2p∏
l=1




[
δlL

2pπ

]
and ca

5 =
2p∏
l=1




[
γlL

2pπ

]
. Employing Stirling’s formula [9, pp. 257],

we find the asymptotic forms

Ks
±(α) ∼ Bs exp[±χs(α) ± iαh

2 log 2

π
] (∓iα)c

s
3(c4)

∓iα , as |α| → ∞ , (4.18)

Ka
±(α) ∼ Ba exp[±χa(α)] (∓iα)c

a
3 (c4)

∓iα , as |α| → ∞ , (4.19)

where Bs/a are constants independent of α and

c
s/a

3 = −1

2
, (4.20)

c4 =
(

L

2p(L − h)

)L/π (
L − h

h

)h/π

. (4.21)

To get a simple asymptotic behaviour of K
s/a
± (α) as |α| → ∞, we choose

χs(α) = i α log c4 − i α h
2 log2

π
, χa(α) = i α log c4 . (4.22, 23)

By inserting the expressions of χs(α), χa(α) in (4.16) and (4.17), respectively, we arrive at
the final representations for Ks±, Ka±.

If, moreover, ε < min ( γ1, δ1, κ1, λ1 ) , it can be easily checked that K
s/a
− (α) is analytic

for τ < ε and K
s/a
+ (α) is analytic for τ > −ε, and, consequently, Ks/a(α) is analytic for

−ε < τ < ε. We decompose the function on the left-hand side of (4.2) as follows

− �0

K
s/a
− (α)

= −k

(ε − iα)K
s/a
− (−iε)

+ −k

ε − iα

[
1

K
s/a
− (α)

− 1

K
s/a
− (−iε)

]

= H
s/a
+ (α) + H

s/a
− (α) , (4.24)
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where H−(α) and H+(α) are analytic in τ < ε and τ > −ε, respectively. Let us now return
to Equation (4.3); we wish to determine the functions J s/a(α). We have already shown that
K

s/a
− , K

s/a
+ are asymptotic to |α|−1/2 as |α| → ∞ . Next, some specific assumptions about

the behaviour of ϕs/a(x, y) in the vicinity of x = 0 are necessary, in order to be able to
use the Abelian theorem for the Fourier transform for finding the properties of F

s/a
+ and

F
s/a
− as |α| → ∞ . We assume that ϕs/a(x, h) = O(1) , as x → 0 with x < 0 , and

∂ϕs/a/∂y (x, h±) = O(x−1/2) , as x → 0 with x > 0 . This implies that F
s/a
− = O(|α|−1)

and F
s/a
+ = O(|α|−1/2) as |α| → ∞ . Hence, all terms in Equation (4.3) tend to zero as

|α| → ∞ . On applying Liouville’s theorem, J s/a(α) must therefore be identically zero, and
so

F
s/a
− (α) = H

s/a
− (α)K

s/a
− (α) = −k

ε − iα
+ k K

s/a
− (α)

K
s/a
− (−iε)(ε − iα)

, (4.25)

F
s/a
+ (α) = H

s/a
+ (α)

K
s/a
+ (α)

= − k

(ε − iα) K
s/a
+ (α) K

s/a
− (−iε)

. (4.26)

Following the steps described at the end of Section 3, we obtain, after straightforward calcu-
lations,

2As
1 = k Ks−(α)

Ks−(−iε) (ε − iα) cosh (αh)
, (4.27)

−2Aa
1 = k Ka−(α)

Ka−(−iε) (ε − iα) sinh (αh)
, (4.28)

ϕs/a(x, y) =




k c
s/a

2√
2π c

s/a

5

∞∫
−∞

�
s/a

i (α, x, y) dα , 0 ≤ y < h ,

k c
s/a

2√
2π c

s/a

5

∞∫
−∞

�s/a
o (α, x, y) dα , h ≤ y ≤ L ,

(4.29)

where

�s
i (α, x, y) = 
(1/2)

(ε − iα)Ks−(−iε)

2p∏
l=1




[
iαL

2pπ
+ δlL

2pπ

]




[
1 + i

α(L − h)

π

] ×




(
1
2 − i

αh

π

)
π

cosh (αy) e−iα(x + log c4) , (4.30)
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�s
o(α, x, y) = 
(1/2)

(ε − iα)Ks−(−iε)

2p∏
l=1




[
iαL

2pπ
+ δlL

2pπ

]




[
1
2 + i

αh

π

] ×




(
1 − i

α(L − h)

π

)
α(L − h)

sinh (α(L − y)) e−iα(x + log c4) , (4.31)

�a
i (α, x, y) = 1

(ε − iα)Ka−(−iε)

2p∏
l=1




[
iαL

2pπ
+ γlL

2pπ

]




[
1 + i

α(L − h)

π

] ×




(
1 − i

αh

π

)
αh

sinh (αy) e−iα(x + log c4) , (4.32)

�a
o(α, x, y) = 1

(ε − iα)Ka−(−iε)

2p∏
l=1




[
iαL

2pπ
+ γlL

2pπ

]




[
1 + i

αh

π

] ×




(
1 − i

α(L − h)

π

)
α(L − h)

sinh (α(L − y)) e−iα(x + log c4) . (4.33)

The indices ’i’ and ’o’ are labels for ’inside’ and ’outside’ the channel. The integrals can be
evaluated using the residue theorem (see [10]). We close the contour by a semicircle CR of
radius R and center at α = 0. The contour is closed in the lower half-plane when x > 0
and in the upper half-plane when x < 0. The contribution of the semicircle to the integrals
vanishes when R tends to infinity since K− is asymptotic to |α|−1/2 as |α| → ∞. We employ
the following:

ϕs/a(x, y) =




ϕ
s/a

1 (x, y) , 0 ≤ y ≤ h , 0 ≤ x ,

ϕ
s/a

2 (x, y) , 0 ≤ y ≤ h , x ≤ 0 ,

ϕ
s/a

3 (x, y) , h < y ≤ L , x ≤ 0 ,

ϕ
s/a

4 (x, y) , h < y ≤ L , 0 ≤ x .

(4.34)
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Straightforward calculations and invoking the limit ε → 0 yield

ϕs
1(x, y) = V

∞∑
n=1

as
1n cos (λn y)e−λn x + V , (4.35)

ϕs
2(x, y) = V

∞∑
n=1

2p∑
l=1

as
2 nl cos (δnl y) eδnl x , (4.36)

ϕs
3(x, y) = V

∞∑
n=1

2p∑
l=1

as
3 nl sin (δnl (L − y)) eδnl x , (4.37)

ϕs
4(x, y) = V

∞∑
n=1

as
4n sin (κn(L − y))e−κn x + V (L − y)

L − h
, (4.38)

where

as
1n = 1

cs
5

2p∏
j=1

Gs
j (λn)


(1 + λn

L − h

π
)

(−1)n
√

π

λn (n − 1)!h e−λn log c4 , (4.39)

as
2nl = 1

cs
5

l−1∏
j=1

Gs
j (−δnl)

2p∏
j=l+1

Gs(−δnl) 


[
1/2 + δnl

h

π

]




(
1 − δnl

L − h

π

) × (−1)n−1 √
π 2p

δnl (n − 1)!L eδnl log c4 ,

(4.40)

as
3nl = 1

cs
5

l−1∏
j=1

Gs
j (−δnl)

2p∏
j=l+1

Gs(−δnl) 


[
1 + δnl

L − h

π

]




(
1/2 − δnl

h

π

) ×

f rac(−1)n−1 √
π π 2pδ2

nl (n − 1)!L (L − h) eδnl log c4 , (4.41)

as
4n = 1

cs
5

2p∏
j=1

Gs
j (κn)


(1/2 + κn

h

π
)

(−1)n
√

π

κn n! (L − h)
e−κn log c4 (4.42)

and where Gs
j (x) = 


[
(x + δj )

L

2pπ

]
. The solution for the anti-symmetric problem is

ϕa
1 (x, y) = V

∞∑
n=1

aa
1n sin (µn y)e−µn x + Vy

h
, (4.43)
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ϕa
2 (x, y) = V

∞∑
n=1

2p∑
l=1

aa
2 nl sin (γnl y) eγnl x , (4.44)

ϕa
3 (x, y) = V

∞∑
n=1

2p∑
l=1

aa
3 nl sin (γnl (L − y)) eγnl x , (4.45)

ϕa
4 (x, y) = V

∞∑
n=1

aa
4n sin (κn(L − y))e−κn x + V (L − y)

L − h
, (4.46)

where

aa
1n = 1

ca
5

2p∏
j=1

Ga
j(µn)


(1 + µn

L − h

π
)

(−1)n

µn n!h e−µn log c4 , (4.47)

aa
2nl = 1

ca
5

l−1∏
j=1

Ga
j (−γnl)

2p∏
j=l+1

Ga(−γnl) 


[
1 + γnl

h

π

]




(
1 − γnl

L − h

π

) × (−1)n−1 π 2p

γ 2
nl (n − 1)!L h

eγnl log c4 ,

(4.48)

aa
3nl = 1

ca
5

l−1∏
j=1

Ga
j (−γnl)

2p∏
j=l+1

Ga(−γnl) 


[
1 + γnl

L − h

π

]




(
1 − γnl

h

π

) ×

(−1)n−1 π 2p

γ 2
nl (n − 1)!L (L − h)

eγnl log c4 , (4.49)

aa
4n = 1

ca
5

2p∏
j=1

Ga
j (κn)


(1 + κn

h

π
)

(−1)n

κn n! (L − h)
e−κn log c4 , (4.50)

and where Ga
j (x) = 


[
(x + γj )

L

2pπ

]
.

The solution of (2.1–2.8) can be written as

ϕ(x, y) =




ϕ1(x, y) , | y | ≤ h , 0 ≤ x ,

ϕ2(x, y) , | y | ≤ h , x ≤ 0 ,

ϕ3(x, y) , h < | y | ≤ L , x ≤ 0 ,

ϕ4(x, y) , h < | y | ≤ L , 0 ≤ x ,

(4.51)

where

ϕi(x, y) = ϕs
i (x, | y |) + sign(y) ϕa

i (x, | y |) (4.52)
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for i = 1, 2, 3, 4.
In the numerical representation of the solution the infinite sums from (4.35–4.38) and

(4.43–4.46) will be truncated after the N th term. If the truncation number for ϕ
s/a

2 and ϕ
s/a

3 is
N1, it is better to choose N2 = 2p N1 as the value for the truncation number for ϕ

s/a

1 and ϕ
s/a

4 .
This choice is motivated by the necessity of having the same precision of the solution (which
is given by the number of terms in the sums) for x < 0 and x > 0.

5. Electric field near the electrode edges

In order to determine the behaviour of the electric field at the ends of the electrodes, we need
to evaluate the quantities ϕ

s/a
,x and ϕ

s/a
,y when (x, y) → (0, h±). Differentiating and using the

properties of the Fourier transform, we have

ϕs/a
,x (x, y) = 1√

2π

∞∫
−∞

(−i)α�s/a(α, y) e−iαxdα , (5.1)

ϕs/a
,y (x, y) = 1√

2π

∞∫
−∞

�s/a
,y (α, y) e−iαxdα , (5.2)

where �s/a(α, y) are found by inserting (4.27) and (4.28) in (3.14) and (3.18), respectively.
Let us first consider the asymptotic evaluation of ϕ

s/a
,x when (x, y) → (0, h−). The integral

can be written as the sum

ϕs/a
,x (x, y) =

−M∫
−∞

E(α, x, y) dα +
M∫

−M

E(α, x, y) dα +
∞∫

M

E(α, x, y) dα , (5.3)

where M > 0 and E(α, x, y) = k Ks−(α) cosh (αy)(−i)α√
2πKs−(−iε) (ε − iα) cosh (αh)(ε − iα)

e−iαx . Assuming

that M is sufficiently large, we can replace E in the first and third integrals by its asymp-
totic expression valid for large arguments. The second term can be neglected because E

is a bounded function of α on the interval [−M,M] and, consequently,
M∫

−M

E dα will be a

continuous function of x. By using (4.18) and cosh (αy)/ cosh (αh) ∼ e|α|(y − h) when
α → ±∞, we obtain

ϕs
,x ∼ k Bs

√
2π Ks−(−iε)


 −M∫

−∞

eiαx+α(y−h)

√−iα
dα +

∞∫
M

e−iαx+α(y−h)

√
iα

dα


 , (5.4)

as (x, y) → (0, h−). If we take the limit M → 0, we may ignore the resulting finite
contributions because they do not alter the singular behaviour. Using the formula [9, pp. 255]

∞∫
0

e−tα α−1/2dα =
√

π

t
, Re t > 0 , (5.5)
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in (5.4), yields

ϕs
,x ∼

√
2 k Bs

Ks−(−iε)

sin(θ/2)√
r

, where reiθ = x + i(y − h) . (5.6)

The other cases are treated analogously and similar expressions are derived. After applying
the limit ε → 0, we readily find

ϕs/a
,x ∼

√
2 k Bs/a

c
s/a

2

sin(θ/2)√
r

, ϕs/a
,y ∼

√
2 k Bs/a

c
s/a

2

cos(θ/2)√
r

, (5.7)

when (x, y) → (0, h±) and where x ± i(y − h) = reiθ . The singular behaviour of the electric
field

Es/a(x, y) =
√

(ϕ
s/a
,x )2 + (ϕ

s/a
,y )2 (5.8)

is then given by

Es/a(x, y) ∼
√

2 k Bs/a

c
s/a

2

1√
r

, r =
√

(x2 + y2) , (5.9)

when (x, y) → (0, h±). Thus, we have established square-root singularities of the electric
field at the electrode tips.

6. Results and discussion

The solution given at the end of Section 4 has a high degree of generality. First, it can be
applied to different configurations of the electrodes (see Table 1). Each of these configurations
can be extended to the case of finite electrodes in which the far edges of the electrodes do
not interact. To determine the appropriate length of the electrodes one can use the following
criterion

|Ex(x, y)| < 0·05 E∞(y) for x > a , |y| ≤ L (6.1)

where a is the half length of the electrodes, Ex(x, y) = ϕ,x(x, y) and E∞(y) = limx→∞√
(ϕ,x(x, y))2 + (ϕ,y(x, y))2. This means that the electric field becomes approximately uni-

form for x > a. For instance, a parametric study done for an anti-symmetric configuration,
for values of L, h and c so that 2 ≤ L/h ≤ 100 and 0·01 < c < 50, shows that (6.1) holds for
x ≥ L − h outside the channel and for x ≥ 0·8 h inside the channel. Consequently, one can
build the solution for the case of two finite electrodes of length 2 a, with a > L − h, charged
in an anti-symmetric way, by taking the solution (4.43–4.46) for x < a and extending it by
symmetry with respect to the line x = a. Similar studies can be done for each case, and they
are very useful for the numerical modeling.

Second, the solution depends on parameters like L/h and c, each of these having a certain
influence on the profile of the electric potential. However, this section will not contain a
detailed discussion of all these cases. We consider it more reasonable to do this in connection
with the investigations of the flow in order to determine the optimal parameters for the desired
effects on the fluid flow. We limit ourselves only to stating a number of configurations in
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Table 1. Schematic diagrams of the configurations for which the solution is
applicable

Two semi-infinite electrodes symmetrically or
anti-symmetrically charged along the channel
walls and two infinite grounded electrodes

Two semi-infinite electrodes non-symmetri-
cally charged along the channel walls and two
infinite grounded electrodes

One semi-infinite electrode placed inside the
fluid flowing through a grounded channel

Table 1, offering a few comments and postponing further studies of the solution to another
paper (in preparation) in which we will examine the influence of the parameters on the channel
flow of an electrorheological fluid.

In all the graphical representations that follow we use the dimensionless quantities

x̃ = x

h
, ỹ = y

h
, L̃ = L

h
, h̃ = 1 , ϕ̃(x̃, ỹ) = ϕ(x, y)

V
, Ẽ(x̃, ỹ) = E(x, y)

h

V
. (6.2)

All plots are done for the case of semi-infinite electrodes and we use the truncation numbers
N1 = 100 and N2 = 2p N1.

We note that the electric permittivities ε1 and ε2 do not appear explicitly in the solution.
Only their ratio c influences the results through γnl and δnl , which are computed numerically
from Equations (4.6) and (4.7). Since the ERF (Rheobay for example) can exhibit values
of the electric permittivity around 10−9 As/Vm (see [11, p. 53]) which is quite large, it is
reasonable to consider small values of the ratio c and we take c = 0·02 as a usual technical
value. Nevertheless, we show in Figure 3 what effects are produced by different values of c

on the electric potential and, consequently, on the electric field. The values of the potential
are equidistant, every second contour being marked. The contours are shifted upwards and the
non-symmetry becomes more pronounced as c is larger. If c = 0·02, the electric field in the
channel is decreasing faster when x tends to −∞ than if c = 50. As expected, for c = 0·02,
the electric field outside the channel is larger than inside and this is reversed for c = 50. In
particular, this means that the insulator surrounding the channel has a significant influence on
the flow behaviour of the ERF inside the channel.

Finally, besides the non-symmetric case we want to refer to the other cases to which
our results can be applied (see Table 1). One can study the electric field also in the anti-
symmetric case. Here the potential in the middle of the channel vanishes. Therefore, one
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Figure 4. Contour lines of the electric field modulus,
Ẽ(x̃, ỹ), around the edge of a single electrode placed
inside the fluid; the channel walls are placed at ỹ = 0
and ỹ = L̃ and they are grounded (c = 1, L̃ = 2h̃).

Figure 5. Contour lines of Ẽ(x̃, ỹ) inside the channel, in
the anti-symmetric and non-symmetric configurations
(c = 0·02, L̃ = 10).

Figure 3. Equipotential lines ϕ̃(x̃, ỹ) = constant for
different values of c = ε1/ε2 (L̃ = 10).
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can use the solution (4.43–4.50) with c = 1 to characterize the case of a single electrode,
placed inside the fluid, parallel with the channel walls which are considered to be groun-
ded. To illustrate this case we have plotted in Figure 4 the modulus of the electric field,

Ẽ(x̃, ỹ) =
√

(
∂ϕ̃

∂x̃
(x̃, ỹ))2 + (

∂ϕ̃

∂ỹ
(x̃, ỹ))2 produced by an electrode placed at ỹ = L̃/2. In

Figure 5 the electric-field moduli, Ẽ(x̃, ỹ) in the anti-symmetric case, is compared with that
in the non-symmetric case for c = 0·02. It can be seen that the profiles are quite similar near
the electrode ends but become very different for x̃ < −0·5. In Figures 4 and 5 every second
contour is marked, except when the lines are too close to one another. In the white regions
around the points where the electrode edges are situated, the electric field is greater than 3.

7. Conclusions

In this work we have found analytically and computed numerically the electric-potential
distribution in a complex configuration of electrodes. The problem arises from the study of
electrorheological fluids in channel flow. Because the dielectric permittivity of the ERF is
very high, a considerable jump in the y-derivatives has to be taken into account. The mixed-
boundary-value problem is split up in two problems which can be solved through application
of the Wiener-Hopf technique. The results can be used to describe the electric field generated
between two infinite grounded electrodes by either one long electrode or two long electrodes
charged in an anti-symmetric or a non-symmetric way. The solution we give here allows for
the first time to model realistically an electrorheological fluid in two-dimensional channel
flow. For a complete treatment of the ERF one should find how to control the effects on the
fluid through the problem parameters.
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